Precise algebraic-based swept volumes for arbitrary free-form shaped tools towards multi-axis CNC machining verification
نویسندگان
چکیده
Dr. Jinesh Machchhar Computer Science Department, Technion-Israel Institute of Technology Precise Algebraic-based Swept Volumes for Arbitrary Free-form Shaped Tools towards Multi-axis CNC Machining Verification This work presents an algebraic based approach and a computational framework for the simulation of multiaxis CNC machining of general freeform tools. The boundary of the swept volume of the tool is precisely modeled by a system of algebraic constraints, using B-spline basis functions. Subdivision-based solvers are then employed to solve these equations, resulting in a topologically guaranteed construction of the swept volume. The presented algebraic-based method readily generalizes to accept tools of arbitrary free-form shape as input, and at the same time, delivers high degree of precision. Being a common representation in CNC simulations, the computed swept volume can be reduced to a dexels’ representation. Several multi-axis test cases are exhibited using an implementation of our algorithm, demonstrating the robustness and efficacy of our approach. This work is jointly done with Gershon Elber and Denys Plakhotnik.
منابع مشابه
Precise gouging-free tool orientations for 5-axis CNC machining
We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOC) [26, 27], that have third order contact with the target surface, and lead ...
متن کاملOptimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System
Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...
متن کاملOptimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System
Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...
متن کاملA real-time surface interpolator methodology for precision CNC machining of swept surfaces
A real–time surface interpolator is developed, to machine a family of swept surfaces directly from their high–level procedural definitions. All the computations required for machining are performed in real time based on the exact surface geometry, including tool path planning, tool path interpolation, tool offsetting, and tool path step–over to achieve a prescribed scallop height. A G–code comm...
متن کاملTowards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution
We introduce a new method that approximates free-form surfaces by envelopes of one-parameter motions of surfaces of revolution. In the context of 5-axis computer numerically controlled (CNC) machining, we propose a flank machining methodology which is a preferable scallop-free scenario when the milling tool and the machined free-form surface meet tangentially along a smooth curve. We seek both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 90 شماره
صفحات -
تاریخ انتشار 2017